Structured large margin machines: sensitive to data distributions
نویسندگان
چکیده
منابع مشابه
Large Margin Boltzmann Machines
Boltzmann Machines are a powerful class of undirected graphical models. Originally proposed as artificial neural networks, they can be regarded as a type of Markov Random Field in which the connection weights between nodes are symmetric and learned from data. They are also closely related to recent models such as Markov logic networks and Conditional RandomFields. Amajor challenge for Boltzmann...
متن کاملLarge Margin Boltzmann Machines and Large Margin Sigmoid Belief Networks
Current statistical models for structured prediction make simplifying assumptions about the underlying output graph structure, such as assuming a low-order Markov chain, because exact inference becomes intractable as the tree-width of the underlying graph increases. Approximate inference algorithms, on the other hand, force one to trade off representational power with computational efficiency. ...
متن کاملMulticategory large-margin unified machines
Hard and soft classifiers are two important groups of techniques for classification problems. Logistic regression and Support Vector Machines are typical examples of soft and hard classifiers respectively. The essential difference between these two groups is whether one needs to estimate the class conditional probability for the classification task or not. In particular, soft classifiers predic...
متن کاملLiquid-liquid equilibrium data prediction using large margin nearest neighbor
Guanidine hydrochloride has been widely used in the initial recovery steps of active protein from the inclusion bodies in aqueous two-phase system (ATPS). The knowledge of the guanidine hydrochloride effects on the liquid-liquid equilibrium (LLE) phase diagram behavior is still inadequate and no comprehensive theory exists for the prediction of the experimental trends. Therefore the effect the ...
متن کاملLarge Margin Semi-supervised Structured Output Learning
In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semi-supervised structured classification has been developed to handle large amounts of unlabeled structured data. In this work, we consider semi-supervised structural SVMs with domain constraints. The optimization problem, which in general is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2007
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-007-5015-9